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If Aq (β, α, k) is the scattering amplitude, corresponding to a potential q ∈ L2(D), where
D ⊂ R

3 is a bounded domain, and eikα·x is the incident plane wave, then we call the
radiation pattern the function A(β) := Aq (β, α, k), where the unit vector α, the incident
direction, is fixed, β is the unit vector in the direction of the scattered wave, and k > 0,
the wavenumber, is fixed. It is shown that any function f (β) ∈ L2(S2), where S2 is the
unit sphere in R

3, can be approximated with any desired accuracy by a radiation pattern:
‖ f (β) − A(β)‖L2(S2) < ε, where ε > 0 is an arbitrary small fixed number. The potential
q, corresponding to A(β), depends on f and ε, and can be calculated analytically.
There is a one-to-one correspondence between the above potential and the density of
the number of small acoustically soft particles Dm ⊂ D, 1 ≤ m ≤ M , distributed in an
a priori given bounded domain D ⊂ R

3. The geometrical shape of a small particle Dm

is arbitrary, the boundary Sm of Dm is Lipschitz uniformly with respect to m. The wave
number k and the direction α of the incident upon D plane wave are fixed. It is shown that
a suitable distribution of the above particles in D can produce the scattering amplitude
A(α′, α), α′, α ∈ S2, at a fixed k > 0, arbitrarily close in the norm of L2(S2 × S2) to an
arbitrary given scattering amplitude f (α′, α), corresponding to a real-valued potential
q ∈ L2(D), i.e., corresponding to an arbitrary refraction coefficient in D.

KEY WORDS: scattering by small bodies, scattering amplitude, radiation pattern,
nanotechnology, inverse scattering.
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1. INTRODUCTION

Let D ⊂ R
3 be a bounded connected domain with Lipschitz boundary S.
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The scattering of an acoustic plane wave u0 = u0(x) = eikα·x , incident upon
D, is described by the problem:

[∇2 + k2n0(x)]u = 0 in R
3, (1)

u = u0(x) + v, (2)

v = A(α′, α)
eikr

r
+ o

(
1

r

)
, r := |x | → ∞,

x

r
:= α′. (3)

The coefficient A(α′, α) is called the scattering amplitude, k > 0 is the wave
number, which is assumed fixed throughout the paper, and the dependence of A on
k is not shown by this reason, α ∈ S2 is the direction of the incident plane wave,
α′ is the direction of the scattered wave, n0(x) is the known refraction coefficient
in D, n0(x) = 1 in D′ := R

3 \ D, and v is the scattered field.
Let Dm , 1 ≤ m ≤ M , be a small particle, i.e.,

k0a 
 1, where a = 1

2
max

1≤m≤M
diam Dm, k0 = k max

x∈D
|n0(x)|. (4)

The geometrical shape of Dm is arbitrary. We assume that Dm is a Lipschitz
domain uniformly with respect to m. This is a technical assumption which can be
relaxed. It allows one to use the properties of the electrostatic potentials. Denote

d := min
m �= j

dist(Dm, D j ). (5)

Assume that

a 
 d. (6)

We do not assume that d � λ0, that is, that the distance between the particles is
much larger than the wavelength. Under our assumptions, it is possible that there
are many small particles on the distances of the order of the wavelength.

The particles are assumed acoustically soft, i.e.,

u|Sm = 0 1 ≤ m ≤ M. (7)

As a result of the distribution of many small particles in D, one obtains a new
material, which we want to be a “smart” material, that is, a material which has some
desired properties. Specifically, we want this material to scatter the incident plane
wave according to an a priori given desired radiation pattern. Is this possible? If
yes, how does one distribute the small particles in order to create such a material?

We study this problem and solve the following two problems, which can be
considered as problems of nanotechnology.
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The first problem is:
Given an arbitrary function f (β) ∈ L2(S2), can one distribute small particles

in D so that the resulting medium generates the radiation pattern A(β) := A(β, α),
at a fixed k > 0 and a fixed α ∈ S2, such that

‖ f (β) − A(β)‖L2(S2) ≤ ε, (8)

where ε > 0 is an arbitrary small fixed number?
The answer is yes, and we give an algorithm for calculating such a

distribution. This distribution is not uniquely defined by the function f (β) and
the number ε > 0.

The second problem is:
Given a scattering amplitude f (α′, α), corresponding to some refraction

coefficient n(x) in a bounded domain D, can one distribute small particles in D
so that the resulting medium generates the scattering amplitude A(α′, α) such that

‖ f (α′, α) − A(α′, α)‖L2(S2×S2) ≤ ε, (9)

where ε > 0 is an arbitrary small fixed number?
The answer is yes, and we give an algorithm for calculating the density of

the desired distribution of small particles given f (α′, α), ∀α′, α ∈ S2, k > 0 being
fixed.

To our knowledge the above two problems have not been studied in the
literature. Our solution to these problems is based on some new results concerning
the properties of the scattering amplitudes, on our earlier results on wave scattering
by small bodies of arbitrary shapes (see Ref. 8), and on our solution of the 3D
inverse Schrödinger scattering problem with fixed-energy data, (7) Chapter 5, (5,6)

In Section 2 we derive some new approximation properties of the scattering
amplitudes. Essentially, we prove the existence of a potential q ∈ L2(D) such that
the corresponding to this q scattering amplitude A(β), β = α′, at an arbitrary fixed
α ∈ S2 and an arbitrary fixed k > 0, approximates with any desired accuracy any
given function f (β) ∈ L2(S2). Moreover, we give formulas for calculating this q,
and these formulas work numerically for arbitrary f (see Ref. 11). The potential q
is related explicitly to a certain distribution of small particles in D. Consequently,
we give formulas for calculating this distribution.

In Section 3 we derive an equation describing the self-consistent field in
the medium consisting of the small particles distributed in D. This equation
is equivalent to a Schrödinger equation with a potential q(x) supported in the
bounded domain D and related in a simple way to the density of the distribution
of the small particles.

The author has solved the 3D inverse scattering problem of finding a com-
pactly supported potential q ∈ L∞(D) from the knowledge of noisy fixed-energy
scattering amplitude. (5,6,7) This algorithm allows one to calculate qδ(x) from the
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knowledge of noisy data fδ(α′, α), supα′,α∈S2 | fδ − f | ≤ δ, such that

sup
x∈D

|qδ(x) − q(x)| ≤ η(δ) −→
δ→0

0, (10)

where q(x) is the exact potential, generating the exact scattering amplitude f (α′, α)
at a fixed k > 0.

Applying this algorithm to the exact data f (α′, α) or to the noisy data
fδ(α′, α), one obtains a stable (in the sense (10)) approximation of q, and, conse-
quently, of the density of the distribution of small particles, which generates the
scattering amplitude arbitrarily close to the a priori given scattering amplitude.

The author’s solution of the 3D inverse scattering problem with the error
estimates is described in Section 4.

2. APPROXIMATION PROPERTIES OF THE SCATTERING

AMPLITUDES

If k > 0 is fixed, then the scattering problem (1)–(3) is equivalent to the
Schrödinger scattering problem on the potential q0(x):

[∇2 + k2 − q0(x)]u = 0 in R
3, (11)

q0(x) =
{

0 in D′, D′ := R
3 \ D

k2[1 − n0(x)] in D.
(12)

The scattering solution u = uq0 solves (uniquely) the equation

uq0 = u0 −
∫

D
g(x, y)q0(y)uq0 (y)dy, g(x, y) := eik|x−y|

4π |x − y| . (13)

The corresponding scattering amplitude is:

A0(α′, α) = − 1

4π

∫
D

e−ikα′ ·x q0(x)uq0 (x, α)dx, (14)

where the dependence on k is dropped since k > 0 is fixed.
If q0 is known, then A0 := Aq0 is known. Let q ∈ L2(D) be a potential and

Aq (α′, α) be the corresponding scattering amplitude. Fix α ∈ S2 and denote

A(β) := Aq (α′, α), α′ = β. (15)

Then

A(β) = − 1

4π

∫
D

e−ikβ·x h(x)dx, h(x) := q(x)uq (x, α). (16)



Distribution of Particles Which Produces a “Smart” Material 919

Theorem 1. Let f (β) ∈ L2(S2) be arbitrary. Then

inf
h∈L2(D)

∥∥∥∥ f (β) −
(

− 1

4π

∫
D

e−ikβ·x h(x)dx

) ∥∥∥∥ = 0. (17)

Proof of Theorem 1: If (17) fails, then there is a function f (β) ∈ L2(S2),
f �= 0, such that∫

S2

dβ f (β)
∫

D
e−ikβ·x h(x)dx = 0 ∀h ∈ L2(D). (18)

This implies

ϕ(x) :=
∫

S2

dβ f (β)e−ikβ·x = 0 ∀x ∈ D. (19)

The function ϕ(x) is an entire function of x . Therefore (19) implies

ϕ(x) = 0 ∀x ∈ R
3. (20)

This and the injectivity of the Fourier transform imply f (β) = 0. Note that ϕ(x)
is the Fourier transform of the distribution f (β)δ(k − λ)λ−2, where δ(k − λ) is
the delta-function and λβ is the Fourier transform variable. The injectivity of the
Fourier transform implies f (β)δ(k − λ) = 0, so f (β) = 0.

Theorem 1 is proved. �

Let us give an algorithm for calculating h(x) in (17) such that the left-hand
side of (17) does not exceed ε, where ε > 0 is an arbitrary small given number.

Let {Y
(β)}∞
=0, Y
 = Y
,m , −
 ≤ m ≤ 
, be the orthonormal in L2(S2) spher-
ical harmonics,

Y
,m(−β) = (−1)
Y
,m(β), Y
,m(β) = (−1)
+mY
,−m(β), (21)

j
(r ) :=
( π

2r

)1/2
J
+ 1

2
(r ), (22)

where J
 are the Bessel functions. It is known that

e−ikβ·x =
∑


=0,−
≤m≤


4π (−i)
 j
(kr )Y
,m(x0)Y
,m(β), x0 := x

|x | . (23)

Let us expand f into the Fourier series with respect to spherical harmonics:

f (β) =
∑


=0,−
≤m≤


f
,mY
,m(β). (24)

Choose L such that ∑

>L

| f
,m |2 ≤ ε2. (25)
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With so fixed L , take h
,m(r ), 0 ≤ 
 ≤ L , −
 ≤ m ≤ 
, such that

f
,m = −(−i)

( π

2k

)1/2
∫ b

0
r3/2 J
+ 1

2
(kr )h
,m(r )dr, (26)

where b > 0, the origin O is inside D, the ball centered at the origin and of radius
b belongs to D, and h
,m(r ) = 0 for r > b. There are many choices of h
,m(r )
which satisfy (26). If (25) and (26) hold, then the norm on the left-hand side of
(17) is ≤ ε.

A possible analytical choice of h
,m(r ) is

h
,m =
⎧⎨
⎩

f
,m
−(−i)


√
π
2k g1,
+ 1

2
(k)

, 
 ≤ L ,

0, 
 > L ,

(27)

where we have assumed that b = 1 in (26), and used the following formula (see
Ref. 1, formula 8.5.8):

∫ 1

0
xµ+ 1

2 Jν(kx)dx = k−µ− 3
2

[(
ν + µ − 1

2

)
k Jν(r )Sµ− 1

2 ,ν−1(k)

− k Jν−1(k)Sµ+ 1
2 ,ν(k) + 2µ+ 1

2
�

(
µ+ν

2 + 3
4

)
�

(
ν−µ

2 + 1
4

)
]

:= gµ,ν(k), (28)

where Sµ,ν(k) are Lommel’s functions, �(x) is the Gamma-function, h
,m(r ) in
(27) do not depend on r , and we assume that h(x) = 0 for r := |x | > 1.

Let us prove that for any q ∈ L2 there exists a q ∈ L2(D) such that q(x)uq

approximates h(x) in L2(D)-norm with arbitrary accuracy.

Theorem 2. Let h ∈ L2(D) be arbitrary. Then

inf
q∈L2(D)

‖h − quq (x, α)‖ = 0. (29)

Here α ∈ S2 and k > 0 are arbitrary, fixed. There exists a potential q ∈ L2(D)
such that h = qu provided that the norm ‖h‖L2(D) is sufficiently small.

Proof of Theorem 2: In this proof we first assume that the norm of f is small,
and then we drop the “smallness” assumption. If the norm of f is sufficiently
small, the norm of h is small, so that the condition

inf
x∈D

∣∣∣∣∣u0(x) −
∫

D
g(x, y)h(y)dy

∣∣∣∣∣ > 0 (30)
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is satisfied. Here g is defined in formula (13). If this condition is satisfied, then the
formula

q(x) = h(x)

[
u0(x) −

∫
D

g(x, y)h(y)dy

]−1

(31)

yields the desired potential q. The function h generates the function u := h
q ,

where u is the scattering solution, corresponding to the potential q, constructed
by formula (31). Therefore, the infimum in (29) is attained if condition (30) is
satisfied by the given h. A sufficient smallness condition for the inequality (30) to
hold, is

∫
D

|h(y)|dy
4π |x−y| < 1.

If f is arbitrary, not necessarily small, then h is not necessarily small. If,
nevertheless, condition (30) holds for this h, then the potential q, given by formula
(31), belongs to L2(D) and yields the scattering amplitude Aq (β) which satisfies
(8).

On the other hand, if condition (30) does not hold, then formula (31) may
yield a potential which is not locally integrable. In this case one can perturb h
slightly, so that the perturbed h, denoted by hδ , ‖h − hδ‖L2(D) < δ, would yield,
by formula (31) with hδ in place of h, a potential qδ ∈ L2(D). If δ is sufficiently
small, then this potential generates the scattering amplitude Aqδ

(β), which satisfies
estimate (8), possibly with cε in place of ε, where the positive constant c does not
depend on ε.

A proof of the possibility to perturb h so that the the perturbed function hδ

would yield by formula (31) a bounded potential qδ is given below, in Lemma 1.
Theorem 2 is proved. �

Lemma 1. Assume that h is analytic in D and bounded in the closure of D. Then
there exists a small perturbation hδ of h, ‖h − hδ‖L2(D) < δ, such that the function

qδ := hδ(x)
u0(x)−∫

D g(x,y)hδ (y)dy
is bounded.

Proof of Lemma 1: First we note, that one may assume without loss of generality
that h is analytic in the closure of D, because analytic functions are dense in L2(D).
One may even assume that h is a polynomial, since polynomials are also dense in
L2(D) if D is bounded. Let

ψ := u0(x) −
∫

D
g(x, y)h(y)dy.

The function ψ is analytic in D since h is. Define the set of its zeros in D:

N := {x : ψ(x) = 0, x ∈ D},
and let

Nδ := {x : |ψ(x)| < δ, x ∈ D}.
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Generically, the set N is a line, because it is the intersection of two surfaces: ψ1 = 0
and ψ2 = 0, where ψ1 := Re ψ and ψ2 := Im ψ . Let Dδ := D \ Nδ . Generically,
|∇ψ | ≥ c > 0 on N , and, therefore, by continuity, in Nδ . A small perturbation of
h will lead to these generic assumptions.

Consider the new coordinates

s1 = ψ1, s2 = ψ2, s3 = x3.

Choose the origin in N . The Jacobian

J := ∂(s1, s2, s3)

∂(x1, x2, x3)

is non-singular in Nδ because ∇ψ1 and ∇ψ2 are linearly independent in Nδ . Also
we have maxx∈Nδ

(|J | + |J−1|) < c. By c > 0 various constants independent of δ

are denoted. Define hδ = h in Dδ and hδ = 0 in Nδ . Let

qδ := hδ

ψδ

in Dδ, qδ := 0 in Nδ,

where

ψδ := u0(x) −
∫

D
g(x, y)hδ(y)dy.

Let us prove that the function qδ is bounded. It is sufficient to check that

|ψδ| > cδ > 0 in Dδ.

By c we denote various positive constants independent of δ. One has

|ψδ| ≥ |ψ | − I (δ) ≥ δ − I (δ),

where

I (δ) := M

4π

∫
Nδ

dy

|x − y| , x ∈ Dδ, M = max
x∈Nδ

|ψ |.

The constant M does not depend on δ because ψ is bounded in D.
The proof will be completed if we establish the estimate

I (δ) = O(δ2|ln(δ)|).
Let us derive this estimate. It is sufficient to check this estimate for the integral

I :=
∫

Nδ

dy

|y| ≤ 2πc

∫
ρ≤δ

dρρ

∫ 1

0

ds3√
s2

3 + ρ2
,

where ρ2 = s2
1 + s2

2 , we have changed the variables y to s, used the estimate
|J−1| < c, and took into account that the region Nδ is described by the inequalities
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ρ ≤ δ, 0 ≤ s3 ≤ 1. A direct calculation of the integral I yields the desired estimate:
I = O(δ2|ln(δ)|).

Lemma 1 is proved. �

Let us give a different, more intuitive, point of view on the role of the
“smallness” of h (or of f ) assumption. If ‖q‖L2(D) → 0, then the set of functions
qu becomes a linear set. Thus, if (29) fails, then there exists an h �= 0, h ∈ L2(D)
such that ∫

D
h(x)q(x)uq (x, α)dx = 0 ∀q ∈ L2(D) ‖q‖ 
 1. (32)

Condition (32) holds in the limit ‖q‖ → 0 because in this limit the set of functions
qu becomes linear, as one can see from the following argument.

Let c = const > 0 be small. We will take c → 0 eventually. Choose

q = che−ikα·x .

For sufficiently small c > 0 the equation

uq = eikα·x −
∫

D
g(x, y)che−ikα·yuqdy := eikα·x − T uq

is uniquely solvable for uq in C(D) because ‖T ‖ < 1 if c > 0 is sufficiently small.
We have

quq = qeikα·x − qT uq = ch + O(c2), c → 0. (33)

The above formula explains the meaning of “linearity in the limit of small poten-
tials”: the term O(c2) is negligible when c → 0.

Substitute (33) into (32), divide by c, and take c → 0. The result is:

∫
D

|h|2dx = 0. (34)

This implies h = 0.
We describe the relation between q(x) and the density distribution of small

particles in Section 3. This relation makes it clear that a suitable distribution of
small particles will produce any desirable potential q ∈ L2(D), and, consequently,
any desirable scattering amplitude (radiation pattern) at an arbitrary fixed α ∈ S2

and k > 0.
We describe the algorithm for calculating the above distribution of small

particles, given f (β) ∈ L2(S2), in Section 3.



924 Ramm

3. SCATTERING BY MANY SMALL PARTICLES

The exact statement of the problem is:

[∇2 + k2 − q0(x)]u = 0 in R
3 \

M⋃
m=1

Dm, (35)

u = 0 on
M⋃

m=1

Sm, Sm := ∂ Dm . (36)

u = eikα·x + v := u0 + v, (37)

v = A(α′, α)
eikr

r
+ o

(
1

r

)
, r := |α| → ∞, α′ = x

r
. (38)

We look for the solution of the form

u(x) = U0(x) +
M∑

m=1

∫
Sm

G(x, s)σm(s)ds, (39)

where G(x, s) is the Green function which solves the scattering problem in the
absence of small particles, i.e.:

[∇2 + k2 − q0(x)]G(x, y) = −δ(x − y) in R
3, (40)

lim
|x |→∞

|x |
(

∂G

∂|x | − ikG

)
= 0, (41)

and U0 is the corresponding scattering solution in the absence of small bodies. It
was proved in Ref. [3, p. 46], (see also Ref. 7, p. 264), that

G(x, y) = eik|x |

4π |x |U0(y, α) + o

(
1

|x |
)

, |x | → ∞, α = − x

|x | , (42)

where U0 is the scattering solution corresponding to q0.
The function (39) solves equation (35) and satisfies the radiation condition

(38), because

U0 = u0 + v0, u0 = eikα·x , (43)

where v0 satisfies the radiation condition (41). Therefore (39) solves the problem
(35)–(38) if σm are such that the boundary condition (36) is satisfied. All the above
arguments did not use the smallness of the particles.
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Let us now use the smallness assumptions (4) and (6). Let x j ∈ D j be an
arbitrary point inside D j . Then

sup
s∈Sj

|G(x, s) − G(x, x j )| = O
(

ka + a

d

)
, |x − x j | > d. (44)

This follows from the integral equation, relating G and g:

G(x, y) = g(x, y) −
∫

D
g(x, z)q0(z)G(z, y)dz,

and from the estimates:∣∣∣∣ eik|x−s|

4π |x − s| − eik|x−x j |

4π |x − x j |
∣∣∣∣ = 1

4π |x − x j |
∣∣∣∣eik(|x−s|−|x−x j |)|x − x j |

|x − s| − 1

∣∣∣∣,
k‖x − s| − |x − x j‖ = k|x − x j |

(
1 + O

(a

d

)
+ O(ka)

)
,

|x − s| = |x − x j − (s − x j )| = |x − x j |
(

1 + O
(a

d

))
.

From the integral equation for G it follows that

G(x, y) = g(x, y)[1 + O(|x − y|] as x → y.

Therefore one may approximate (39) as

u(x) = U0(x) +
M∑

m=1

G(x, x j )Qm

[
1 + O

(
ka + a

d

)]
, (45)

where |x − x jm | ≥ d for all m, 1 ≤ m ≤ M , and

Qm =
∫

Sm

σm(s)ds. (46)

Therefore, if one knows the numbers Qm , 1 ≤ m ≤ M , then one knows the scat-
tering solution u(x) at any point which is at a distance ≥ d from the small body
nearest to x .

Generically, Qm �= 0. However, if the Neumann boundary condition is im-
posed on Sm , then Qm = 0, and, by this reason, one has to take into account the next
non-vanishing term. Such a more delicate analysis is carried over in the problem
of wave scattering by a single acoustically hard body in Ref. [8, pp. 98–99].

Let us derive a linear algebraic system for calculating Qm . To do this, let us
use the boundary condition (36). We have:

∫
Sm

G(s, t)σmdt = −
[

U0(xm) +
∑
j �=m

G(xm, x j )Q j

]
. (47)
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Since k|s − t | ≤ 2ka 
 1, one has

G(s, t) ≈ eik|s−t |

4π |s − t | = 1

4π |s − t | (1 + O(ka)) . (48)

Consequently, Eq. (47) can be written as

∫
Sm

σm(t)

4π |s − t |dt = −
[

U0(xm) +
∑
j �=m

G(xm, x j )Q j

]
. (49)

This is an equation for the electrostatic charge distribution σm on the surface Sm of
the perfect conductor Dm , charged to the potential which is given by the right-hand
side of (49). Therefore, the total charge Qm on the surface Sm of the conductor
Dm is given by the formula:

∫
Sm

σmdt = Qm = −Cm

[
U0(xm) +

∑
j �=m

G(xm, x j )Q j

]
, 1 ≤ m, j ≤ M,

(50)
where Cm is the electrical capacitance of the conductor Dm , and minus the expres-
sion in the brackets can be interpreted as the potential to which the conductor Dm

is charged. Equation (50) is a linear algebraic system for the unknown quantities
Q j , 1 ≤ j ≤ M .

Assume that the distribution of small bodies Dm in D is such that

lim
M→∞

∑
Dm⊂D̃

Cm =
∫

D̃
C(x)dx, (51)

where D̃ is an arbitrary subdomain of D. This means that C(x) is the limiting
density of the capacitance per unit volume around an arbitrary point x ∈ D. In
other words, one can say that C(x)dx = ∑

Dm⊂dx Cm , where dx is the element of
the volume around the point x . Now, the relation (45) in the limit

M → ∞, ka → 0,
a

d
→ 0,

takes the form

u(x) = U0(x) −
∫

D
G(x, y)C(y)u(y)dy, (52)

where C(x) is defined in (51).
Note that the relative volume of the small particles, injected into D, is neg-

ligible as a
d → 0. Indeed, the number of small particles per unit volume is of the

order O( 1
d3 ). The volume of one small particle is of the order O(a3). Thus, the

relative volume of the small particles, that is, the total volume of small particles
per unit volume of the material in D, is O( a3

d3 ). This quantity tends to zero as
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a
d → 0. On the other hand, the electrical capacitance of one conductor with the
shape of a small particle is of the order O(a). Therefore, the total electrical capac-
itance per unit volume is O( a

d3 ). This quantity has locally, around a point x ∈ D,
a finite non-zero limit C(x) as a

d → 0, according to (51). Thus, the injection of
small particles under our assumptions is similar to “dusting”, since the relative
volume of the injected particles is negligible. This conclusion should be of interest
to experimentalists who will implement practically the theory, developed in this
paper.

An equation which is similar to (52), with g(x j , y) in place of G(x j , y), has
been derived in Ref. 2 by a different argument and in Ref. [3, pp. 191–192], by an
argument, close to the one used above (see also Ref. 12).

Equation (52) is equivalent to the Schrödinger equation[∇2 + k2 − q0(x) − C(x)
]
u = 0, (53)

and u(x) is the scattering solution corresponding to the potential

q(x) = q0(x) + C(x). (54)

To verify this, one applies the operator ∇2 + k2 − q0(x) to both sides of Eq. (52)
and takes into account Eq. (40). If q0(x) is known (which we assume), then q(x)
and C(x) are in one-to-one correspondence.

If the small particles Dm are identical, and C0 is the electrical capacitance of
a single particle, then

C(x) = N (x)C0, (55)

where N (x) is the density of the number of particles in a neighborhood of the
point x , that is, the number of particles per unit volume around point x .

Therefore, given f (β) ∈ L2(S), one found q(x), such that ‖Aq (β) − f (β)‖ ≤
ε, where Aq (β) is the scattering amplitude, corresponding to the potential q, the
energy k2 > 0 and the incident direction α being fixed, and β = α′ is the direction
of the scattered wave.

Let us describe the steps of our algorithm.

Step 1. Given f (β), find h ∈ L2(D).

This problem is ill-posed. It is similar to solving first kind integral equation

f (β) = − 1

4π

∫
D

e−ikβ·x h(x)dx .

If this equation is solvable, then f has to be infinitely smooth on S2. If fδ is a
slightly perturbed f , then the above equation may be not solvable. In Step 1 one
solves a problem of approximation of an arbitrary f ∈ L2(S2) by an infinitely
smooth function. If f is not continuous, then the increase of the accuracy of
approximation results in the growth of the norm ‖h‖L2(D). This would lead to large
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maximal values of the corresponding q. Therefore a regularization procedure
is needed in numerical implementation of our solution. Some related numerical
experiments are described in Ref. 11.

Step 2. Given h ∈ L2(D), find q such that ‖h − q(x)uq (x)‖L2(D) ≤ ε.

Let us elaborate on Step 2. First, assume the existence of a potential q, such
that h = qu. Consider the equation

u = u0 −
∫

D
gquqdy = u0 −

∫
D

ghdy. (56)

We have

quq := h.

Thus,

Aq (β) = − 1

4π

∫
D

e−ikβ·x h(x)dx . (57)

Multiply (56) by q. Then

h = u0q − q

∫
D

ghdy.

Therefore, if

inf
x∈D

∣∣∣∣u0(x) −
∫

D
g(x, s)h(y)dy

∣∣∣∣ > 0,

then the solution of the equation quq = h is unique and is given by the formula:

q(x) = h(x)

u0(x) − ∫
D ghdy

. (58)

Formula (58) yields a potential for which Aq (β) is given by formula (57), and
the corresponding scattering solution is given by formula (56). All this is true
provided, for example, that

sup
x∈D

∣∣∣∣
∫

D
g(x, y)h(y)dy

∣∣∣∣ < 1. (59)

Inequality (59) holds if h is fixed and diam D is sufficiently small, because of the
following estimate:

sup
x

∣∣∣∣
∫

D
g(x, y)h(y)dy

∣∣∣∣ ≤ (4π )−
1
2 ‖h‖L2(D)(diam D)

1
2 .

Inequality (59) also holds if ‖h‖L2(D) is sufficiently small and D is fixed. The norm
‖h‖L2(D) is small if ‖ f ‖L2(S2) is sufficiently small. For the formula (58) to yield the
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desired potential, the inequality (59) is not necessary. If one can find a potential
q(x) from the given h by formula (58), then this q generates the scattering solution
by the formula

uq = u0 −
∫

D
ghdy, (60)

and

h = q(x)uq (x). (61)

The potential q can be found by formula (58), provided that f (β) is sufficiently
small, because then h will be sufficiently small as follows, e.g., from (27).

If q is found, then

N (x) = q(x) − q0(x)

C0
, (62)

where C0 is the electrical capacitance of a conductor with the shape of a small
particle, and all small particles are assumed to have the same shape and, therefore,
the same electrical capacitance. Thus, the corresponding distribution density of
small particles is given analytically.

Analytical formulas, which allow one to calculate C0 with any desired accu-
racy, are derived in Ref. 8, see also formula (91) below.

Remark 31. If f (β) corresponds to a real-valued q(x), then formula (58) yields
a real-valued potential. In general, formula (58) yields a complex-valued potential.
To get a complex-valued potential by a formula, similar to (55), one has to replace
the Dirichlet boundary condition (36) by the impedance boundary condition

uN = ζu on Sm, (63)

where N is the exterior unit normal to the boundary S, and ζ is a complex constant,
the impedance. Then C0 in (55) should be replaced by the quantity:

Cζ = C0

1 + C0
ζ S

, (64)

(see Ref. [8, pp. 96–97]), and, therefore, formula (55) yields a complex-valued
potential Cζ (x) if ζ is a complex number.

Suppose that a given h corresponds to a potential q(x) ∈ L2(D) in the sense
that h = q(x)u(x), where u(x) is the scattering solution corresponding to this q(x)
at the wavenumber k > 0 and with the incident direction α. Then formula (58)
defines q(x), and the corresponding scattering solution is u = h(x)

q(x) .

If formula (58) does not produce a p ∈ L2(D), then one can replace h in (58)
by an hε, ‖h − hε‖L2(D) < ε, and get a square-integrable potential qε by formula
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(58) with h replaced by hε. If ε is sufficiently small, this potential qε generates the
radiation pattern, which differs by O(ε) from the desired f .

4. RAMM’S SOLUTION OF THE 3D INVERSE SCATTERING

PROBLEM WITH FIXED-ENERGY DATA

We follow Refs. 6 and 7. Consider first the inversion of the exact data
Aq (α′, α).

Let

Aq (α′, α) =
∞∑


,
′=0

A
,m,
′,m ′Y
′,m ′(α′)Y
,m(α). (65)

It is proved in Ref. [7, p. 262], that

|Y
(θ )| ≤ 1√
4π

er |Im θ |

| j
(r )| , ∀r > 0, θ ∈ M, (66)

where j
(r ) is the spherical Bessel function, Im θ is the imaginary part of the
complex vector θ ∈ M, and the algebraic variety M is defined by the formula:

M = {z : z ∈ C
3, z · z = k2}, z · ζ :=

3∑
j=1

z jζ j .

Estimate (66) allows one to prove (see Ref. 6) that the series (65) converges
absolutely for α′ = θ ′ ∈ M, so that the exact data Aq (α′, α) allow one to calculate
the values Aq (θ ′, α), θ ′ ∈ M. These values are used below in the inversion formula
(68).

One can prove Ref. [7, p. 258], that any ξ ∈ R
3 can be written (nonuniquely)

as

ξ = θ ′ − θ, θ ′, θ ∈ M, |θ | → ∞. (67)

In Ref. [7, p. 258], explicit analytical formulas are given for θ ′ and θ satisfying
(67).

The exact data A(α′, α) admit an analytic continuation from S2 × S2 onto
M × S2. Let

q̃(ξ ) :=
∫

D
q(x)e−iξ ·x dx .

The inversion formula, proved in Ref. [7, pp. 264–266], is

q̃(ξ ) = lim
|q|→∞

θ ′−θ=ξ,θ ′,θ∈M

[
−4π

∫
S2

A(θ ′, α)ν(α, θ )dα

]
, (68)
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where (67) holds and ν(α, θ ) is an arbitrary approximate solution to the problem

F(ν) :=
∫

a1≤|x |≤b
|ρ(x)|2dx = inf := d(θ ). (69)

Here

ρ(x) := e−iθ ·x
∫

S2

u(x, α)ν(α, θ )dα − 1, (70)

a1 > 0 is a radius of a ball which contains D as a strictly inner-subdomain, and
b > a1 is an arbitrary fixed number, and u(x, α) is the scattering solution. The
approximate solution ν to (69) is understood in the following sense:

F(ν) ≤ 2d(θ ). (71)

This means that it is not necessary to find a very accurate approximation of the
infimum in the minimization problem (69). It is sufficient, for example, to find
any function ν(α, θ ) for which the functional (69) takes the value not more than
2d(θ ). The inversion formula (68) holds with such ν(α, θ ). The inversion formula
(73) below is given with the error term.

It is proved in Ref. [7, p. 266], that

d(θ ) ≤ c

|θ | , θ ∈ M, (72)

where c = c(‖q‖) > 0 is a constant depending on an L∞(D) norm of q. Therefore,
given the exact data Aq (α′, α), one recovers the potential q(x) by formula (68).

The error estimate of formula (68) is given by the formula:

q̃(ξ ) = −4π

∫
S2

A(θ ′, α)ν(α, θ )dα + O

(
1

|θ |
)

, |θ | → ∞, (73)

where (67) holds.
If q(x) is found, then

N (x) = q(x) − q0(x)

C0
, (74)

so that the density of distributions of small particles is found analytically, explicitly.
Consider now the inversion of noisy data Aδ(α′, α),

sup
α′,α∈S2

|Aδ(α′, α) − A(α′, α)| ≤ δ. (75)

Here the exact data A(α′, α) corresponds to an exact potential and is assumed not
known. Instead, its noisy measurements Aδ(α′, α) are assumed known.

Define

N (δ) =
[ |ln δ|

ln|ln δ|
]

, (76)

where [x] is the integer nearest to x > 0, so that limδ→0 N (δ) = ∞.
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Define also the following objects:

Âδ(θ ′, α) =
N (δ)∑

=0

Aδ
(α)Y
(θ ′),
∑




:=
∑




∑
−
≤m≤


, (77)

uδ(x, α) = eikα·x +
N (δ)∑

=0

Aδ
(α)Y
(α′)h
(kr ), α′ := x

r
, r = |x |, (78)

where h
(kr ) are the spherical Hankel functions,

ρδ(x ; ν) = e−iθ ·x
∫

S2

uδ(x, α)ν(α)dα − 1, θ ∈ M, (79)

µ(δ) = e−γ N (δ), γ = ln
a1

b0
> 0, (80)

b0 := 1

2
diam D, κ = |Im θ |. (81)

Let

b0 < a1 < b, (82)

where a1 and b are arbitrary positive fixed numbers. Consider the problem:

|θ | = sup := ϑ(δ) (83)

under the constraints

|θ | [‖ρδ(ν)‖L2({x :a1≤|x |≤b}) + ‖ν‖L2(S2)e
κbµ(δ)

] ≤ c, (84)

θ ∈ M, θ ′ − θ = ξ, θ ′, θ ∈ M, (85)

where c > 0 is a sufficiently large constant, and b0 < a1 < b.
It is proved in Ref. [7, p. 271], that

ϑ(δ) = O

( |ln δ|
(ln|ln δ|)2

)
δ → 0. (86)

Let θ (δ) and νδ(α) be any approximate solution to (83)–(85) in the sense that

|θ (δ)| ≥ 1

2
ϑ(δ). (87)

Define

q̂δ := −4π

∫
S2

Aδ(θ ′, α)νδ(α)dα. (88)

The following result is proved in Ref. [7, p. 271].
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Theorem (Ramm) One has

sup
ξ∈R

3

|̂qδ − q̃(ξ )| = O

(
(ln|ln δ|)2

|ln δ|
)

, δ → 0. (89)

This result gives an inversion formula for finding the potential from noisy
fixed-energy scattering data.

Thus, the algorithm for finding the density of the distribution of small particles
from the fixed-energy scattering data A(α′, α) can be formulated as follows:

Step 1. Given A(α′, α), find q(x) using the inversion formulas (68) in the case of
the exact data or (88) in the case of noisy data.

Step 2. Find the density of the distribution of the small particles by formula (62),
where formulas for C0 are given in Ref. [8, p. 26]:∣∣C0 − C (n)

∣∣ = O(Qn), 0 < Q < 1, (90)

where Q depends only on the geometry of the surface,

C (n) = 4π |S|2
{

(−1)n

(2π )n

∫
S

∫
S

dsdt

rst

∫
Sn integrals

...

×
∫

S
ψ(t, t1) . . . ψ(tn1 , tn)dt1 · dtn

}−1

(91)

ψ(t, s) = ∂

∂ Nt

1

rst
, rst = |s − t |, |S| = meas S, (92)

S is the surface of the conductor, C0 is the electrical capacitance of this
conductor, and Nt is the exterior normal to S at the point t .

In particular, for n = 0 one gets

C (0) = 4π |S|2
J

, J :=
∫

S

∫
S

dsdt

rst
. (93)

It is proved in Ref. [8, p. 30], that

C (0) ≤ C0. (94)

Formula (91) given an approximate value C (n) of the electrical capacitance of a
perfect conductor placed in the space with dielectric permittivity ε0 = 1. If ε0 �= 1,
then one has to multiply the right-hand side of (91) by ε0.
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